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57 078 Metz Ćedex 03, France
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57 078 Metz Ćedex 03, France

Received 26 June 1998, in final form 16 October 1998

Abstract. We present our new accurate measurements on the electrical resistivity and
thermopower of liquid germanium as a function of temperature. To interpret our data we used
ab initio calculations of the electrical resistivityρ(E) and of the thermoelectric powerQ(E) of
liquid germanium as a function of energy. The calculations have been performed within a self-
consistent method in which the conduction band bottom has been matched with the muffin tin zero.
Various potentials have been used especially the potential based on the Hartree–Fock formalism
and the potential derived from the density functional theory which take into account the exchange
and correlation effects. As result the new prescriptions improve significantly the resistivity and the
thermopower with respect to the methods commonly used.

Introduction

With the development of new theoretical models and computing techniques, several authors
focused their attention on the interpretation of the unusual atomic and electronic experimental
properties of liquid polyvalent metals like germanium. The radial distribution function of this
liquid ‘metal’ does not display the usual minimum in the region between the first and the
second main peaks; a flat maximum is located in this region [1]. The corresponding static
structure factora(q) shows an important deviation from a hard-sphere-like structure factor,
with a small shoulder on the high side of the first peak at aboutq = 2kF . For germanium the
number of nearest neighbours is estimated to be 6.8 by Bellissentet al [2], compared to 11 for
liquid aluminium, which suggests that some remanence of the crystalline tetrahedral network
occur. The electronic density of states has been obtained by the photoemission experiments
of Indelkofer et al [3] which show a clear separation of the s and p states in the middle
of the conduction band of liquid germanium and a minimum at the Fermi energy. This DOS
configuration is related to the low value of the first nearest neighbour co-ordination (lower than
seven), which yields a reduction of the overlap between orbitals centred on the neighbouring
sites. This interplay of the atomic order and of the electronic structure has been interpreted
by Jank and Hafner [4] using pseudopotential perturbation theory. The latter authors showed
that the screening of the ions by the conduction electrons leads to the Friedel oscillations in
the interatomic potential. The ions are located in Friedel’s minimum at a distance of about
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λF = 2π/2kF . Jank and Hafner [4] showed further that if the first nearest neighbour’s position
is superimposed on the repulsive hump of the interatomic potential, it causes a shoulder ina(q).

The electronic properties of liquid metals are based on the scattering of nearly free electrons
by potentials. Two different approaches have been followed.

• The first one is based on what Ziman [5] called the ‘method of the neutral pseudoatoms’.
It consists of starting with the muffin-tin potential of an atom and correcting it by taking into
account the exchange through a Slater [6] (or Kohn–Sham [7]) formula. This method has first
been used for liquid metals by Dreirach [8] and for liquid alloys by Dreirachet al [9], Hirata
et al [10] and most of the other authors.
• The second is another interesting approach proposed by Ratti and Jain [11, 12]. It

consists of constructing the muffin-tin potential of an ion and adding an electronic contribution
determined more accurately from the dielectric screening function that includes exchange
and correlation. This dielectric screening function was well described and very accurately
calculated in pseudopotential calculations of liquid metal transport properties. This description,
though more satisfactory from a physical point of view, did not give good results and was no
longer used.

The construction of muffin tin potentials needs the knowledge of the interatomic distance
to make the superposition of the atomic (or ionic) potentials. Here again two methods have
been proposed.

• The first one was that of Dreirach [8] called the quasicrystalline approximation (Q.C.A.)
derived from crystalline solids. It takes as input the nearest neighbour distance and the co-
ordination number.
• The second method is that which has been refined by Mukhopadhyayet al [13]

who constructed the superposition potential by weighting the superposition of the neighbour
potentials by the experimental pair correlation function. Waseda [14] and co-workers measured
systematically (in the seventies) the structure factors of most metals and calculated the
resistivity and thermopower within this method.

The muffin-tin radius is sometimes considered as an adjustable parameter but can be also
be reasonably fixed at half the distance of the first peak (maximum) position in the experimental
pair correlation function. In our calculations we used this determination of the muffin-tin radius
without any fitting. The electronic transport properties depend severely on the pair correlation
function used and on the accuracy of its experimental determination.

A very important point is the position of the Fermi energy with respect to the scattering
muffin-tin potential. The location depends on the position of the conduction band bottom
relative to the muffin-tin zero and on the shape of the density of states.

• Dreirach [8] assumed a free electron band whose bottom is shifted byEB from the
muffin-tin zero. TheEB value is calculated following an expression due to Ziman [15].
• On the other hand, Espositoet al [16] tookEB = 0 but calculated the density of states

with Lloyd’s [17] expression.
• We propose an alternative way for the determination of the Fermi energy that will be

compared to the above methods mentioned before.

A further matter of discussion is the description of exchange and correlation. It has
been included in Ratti’s approach through the dielectric screening function. In the muffin-tin
approach, the exchange is included in theα exchange potential coefficient, which was usually
taken as 1 (Slater approach) or 2/3 (Kohn–Sham approach). We proposed a better description
of the exchange and correlation effects by using either the derivation due to Robinsonet al
[18] or the LDA [19] approach with or without a GGA correction [20, 21].
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We present a detailed calculation of the resistivity and of the thermoelectric power for
liquid germanium in terms of thet-matrix approach. The purpose of this paper is first to
review the different approaches used to determine the electronic transport properties of liquid
metals:

• construction of the atomic or ionic potential;
• methods of superposition of the atomic potentials to construct a disordered condensed

matter potential and
• determination of the Fermi energy.

The inconsistencies of the different calculations are discussed. Some results near the
experimental values have been obtained earlier (probably fortuitously). In this paper we
determine the resistivity and thermopower curve versus energy in order to analyse the influence
of the position of the Fermi energy. We introduce the exchange and correlation contribution
either with Robinson’s expression or with the recent density functional theory using the local
density approximation.

The different muffin-tin potentials used in this work are described in section 1. The
position of the Fermi energy is discussed in section 2. The Ziman nearly free electron model
for electronic transport in liquid metals [22] is presented in section 3. The calculated electronic
transport properties of liquid germanium are discussed and compared to our experimental data
in section 4.

1. Muffin-tin potentials

The phase-shifts entering the expression of the electronic properties are calculated from a
muffin-tin potential. The various potentials used in this work divide into three types: potentials
derived from the Hartree–Fock theory, potentials obtained within the density functional theory
together with different exchange–correlation approximations and ionic potentials.

1.1. Hartree–Fock formalism

In the framework of the Hartree–Fock (HF) theory, the atomic one particle potential is given
by:

va(r) = −z
r

+
∫
ρ(r − r ′)
|r − r ′| dr ′ + vex(r) (1)

wherez is the atomic number. The first and second terms are the potentials due respectively
to the Coulomb interaction with the nuclear charge and with the other electrons. The last term
is the exchange and correlation potential. The exchange contribution has been approximated
by Slater [6] who introduced a weighted average over occupied states.

νex(r) = −3

[(
3

8π

)
ρ(r)

]1/3

(2)

whereρ(r) is the local density of the system in question. To improve the influence of the
electron correlation on the pair interactions, we propose to use the expression which has
been established by Robinsonet al [18]. It consists of replacing the Coulomb interaction
1/|r − r ′| in the original Slater treatment of the exchange by(1/|r − r ′|) exp(−ks |r − r ′|),
whereks = (4kF /π)1/2 is the screening factor andkF is the Fermi momentum. The correlation
correction leads to the averaged screened exchange potential, which is now expressed as:

νav.ex.scr.(r) = −
((

3

8π
ρ(r)

)1/3 4

π

∫ 1

0
dx(1− 3

2x + 1
2x

3)(2kF x)
2V (2kF x) (3)
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where

V (q) = vc(q)

ε(q)
. (4)

The expressionvc(q) = 4π/q2 is the Fourier transform of the Coulomb interaction andε(q)

is the electrical dielectric screening function.

1.2. Ionic potential

The derivation of Mattheiss describes the dense matter as an assembly of neutral atoms. In
metals, it is common to consider that the assembly of ions is immersed in a nearly free electron
gas. The pseudopotential theory describes the matter by considering two contributions: an
ionic potential (also called bare potential) and an electronic potential. The counterpart in
the momentum space is a form factor including the bare ion contribution and the electron
contribution through the dielectric screening function. The same ideas have been adopted by
Ratti [11, 12] who assumes that the potential seen by a conduction electron is the sum of the
ion contribution augmented by its own share of screening cloud. The screened ionic potential
is given by:

vs(r) = vi(r) + ve(r) (5)

wherevi(r) is the self-consistentionic potential given by Herman and Skillman [23] and Slater
[24], which is calculated from equations (1) and (2).ve(r) is the screening potential whose
Fourier transformve(q) is given by:

ve(q) = 4π

�0

(
1− 1

ε(q)

)
(6)

whereε(q) is the well known dielectric screening function including exchange and correlation.

1.3. Density functional theory

On the other hand, the density functional method provides a framework for calculation of
ground state atomic one-particle potentials. While density functional theory (DFT) [24] is
exact in principle, a practical implementation of the method requires the approximation of
the exchange–correlation potential. The simplest and most widely approximation used for
the exchange–correlation potential is the local-density approximation (LDA) [19], which is
valid only for slowly varying densities. The LDA has been improved with the development
of the generalized gradient approximation (GGA) [20, 21] in which the exchange–correlation
functional incorporates density gradient terms.

For constructing the liquid single site potential, one has to take care of the specific
neighbouring arrangement. The construction procedure is the one given by Mattheiss [25]
for solids which has been adapted to (disordered) liquid metals by Mukhopadhyay [13]. The
atomic environment is introduced by the experimental pair correlation functiong(r)measured
by Bellissent-Funel and Bellissent [26]. The liquid single site charge densityρ(r) and the total
coulombic potentialVc(r) are obtained as follows:

ρ(r) = ρa(r) +
2π

�0r

∫ ∞
R→0

Rg(R) dR
∫ R+r

R−r
ρa(t) dt (7)

Vc(r) = vca(r) +
2π

�0r

∫ ∞
R→0

Rg(R) dR
∫ R+r

R−r
vca(t) dt (8)

whereρa(r) refers to the neutral atom charge density distribution,vca(r) is the atomic Coulomb
potential andR is the distance of the atom’s position from the origin. In the case of the ionic
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potential (Ratti’s approach) the ionic single site charge density (7) and the total Coulomb ionic
potential (8) are obtained by replacing respectively in equations (7) and (8) the neutral atom
charge densityρa(r) by the ionic distributionρi(r) and the atomic Coulomb potentialvca(r)
by the ionic onevci (r). The muffin-tin potential is written as:

VMT =
{
Vc(r) + Vex(r) r 6 rMT
εMTZ r > rMT

(9)

where Vex(r) is the total exchange–correlation potential andεMTZ (the muffin-tin zero)
corresponds to the average potential in the interstitial region and is calculated by taking the
mean value of potential between the muffin-tin and the Wigner–Seitz spheres:

εMTZ = 3

(rWS)3− (rMT )3
∫ rWS

rMT

r2(Vc(r) + Vex(r)) dr. (10)

The muffin-tin radiusrMT is taken to be half of the distance between the origin and the first
peak ing(r). The Wigner–Seitz radius

rWS =
(

3�0

4π

)1/3

(11)

is expressed as a function of the atomic volume�0.

2. Fermi energy determination

Two approaches are widely used for the determination of the Fermi energy.

2.1. The method of Dreirach et al

The earliest one is that given by Dreirach [8] in which the Fermi energyEF is written as

EF = EB +
h̄2k2

F

2m∗
(12)

whereEB is the bottom of the band andkF is the free electron Fermi wavenumber.EB
is a structure independent quantity that can be related to the s-phase shift of the muffin-tin
potential [15]. The parameterm∗ is an effective mass determined from the band structure in
the crystalline state. The energyE is counted from the muffin-tin zero energy (figure 1) and
not from the origin of the free electron density of state.

2.2. The method of Esposito et al

The second derivation was presented by Espositoet al [16] who proposed a consistent method
to determineEF without any value ofEB andm∗. They introduced the number of conduction
electrons per atomNC (effective valence) which is different from the valenceZ. The Fermi
energyEF is obtained by filling the density of state curve byZ electrons. The Fermi wave
vectorkF is obtained fromEF by:

kF = (2mEF )1/2

h̄
. (13)

The effective valenceNC is obtained fromkF by:

NC = k3
F�0

3π2
. (14)
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Figure 1. Determination of the Fermi energy following the method of Dreirach [8].

The interpretation of this prescription is based on Lloyd’s [17] expression for the total integrated
density of states per atom appropriate to a system of non-overlapping muffin-tin potentials.

N(E) = N0(E) +
2

π

∑
l

(2l + 1)η1(E) +Nm(E). (15)

N0(E) is the free-electronintegrateddensity of states proportional to(E)3/2, η1(E) the energy
dependent phase shift of the single-site scattering andNm(E) the effects of multiple scattering.
In order to obtain the Fermi energy together with other free-electron parameters, consistent
with the Faber–Ziman formula [27], only single-site scattering has to be taken into account.
According to Lloyd [17], this implies thatEF is to be determined using the total number of
valence electrons per atom:

Z = N(EF ) ≈ N0(EF ) +
2

π

∑
l

(2l + 1)η1(EF ). (16)

The location of the Fermi energy with respect to the muffin-tin potential is illustrated in figure 2.
The multiple-scattering termNm(EF ) has been neglected. This point may be a weakness of
the approach since its importance has not been checked for computational reasons.

2.3. Our method

Presently we propose a new procedure based on the following arguments. The free boundary
condition for the single-site scattering (equation (13)) is a good approximation only for a free
conduction band whose energy starts at the muffin-tin zero [28, 29]. It appears that for liquid
germanium the bottom of the conduction band calculated with Ziman’s method [15], amounts
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Figure 2. Determination of the Fermi energy following the method of Espositoet al [16].

−0.334 Ryd, showing a discrepancy with the free band approximation. We think that both
Esposito’s and Dreirach’s approaches are not suited to obtain the correct germanium Fermi
level. In Esposito’s model the density of states is counted from the muffin-tin zero. However
the bottom of the band as calculated from the Ziman formula is located far below it. The use of
the free electron density in Dreirach’s model is on one hand not close enough to the real density
of states, and on the other hand, an important part of the band is situated below the muffin-tin
potential. In order to improve the determination of the Fermi level we suggest introducing the
free boundary conditions for the conduction bands of liquid germanium. This can be achieved
by adjusting the bottom of the low-lying conduction band with the muffin-tin zero. We use a
self-consistent procedure (figure 3) in which the muffin-tin zero is allowed to move downward
(or upward) until the calculated bottom of the conduction band (EB) and the muffin-tin zero
match within 0.001 Ryd. At each iteration equations (13) and (14) have to be satisfied. The
muffin-tin zero together with the bottom of the conduction band are simultaneously displaced.

3. Resistivity and thermoelectric power

Ziman [22] proposed a formalism to interpret the electronic transport properties of normal
metals. It has been adapted (in terms of phase shifts) to noble metals by Evanset al [30] and
has been further extended to transition metals and alloys by Dreirachet al [9]. The electrical
resistivity of a pure liquid metal can be written as a function of energyE and wave vectork:

ρ(E) = 3π2m2
e�0

4e2h̄3k6

∫ 2k

0
a(q)|t (q, E)|2q3 dq (17)
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Figure 3. Determination of the Fermi energy by using our self-consistent method.

where�0 is the atomic volume andme is the electron mass.k and E are related by
E = h̄2k2/2m∗ + EB . In order to make comparison with the experimental resistivity, it is
necessary to takek = kF andE = EF . We use the experimental structure factora(q). The
t-matrix formulation has been expressed in term of phase shifts for transition metals and their
alloys [9, 30].

t (q, E) = − 2πh̄3

m
√

2mE�0

∑
l

(2l + 1) sinηl(E) exp(iηl(E))Pl(cosθ). (18)

The phase shiftsηl(E) are calculated following Mukhopadhyayet al [13]. Various exchange–
correlation potentials, added to the electrostatic Coulomb part, were used in the construction
of the muffin-tin potential. This approach gives an energy-dependent resistivity and, if the
energy-dependent phase shifts are known, permits the calculation of the thermoelectric power
as follows:

Q(EF ) = −π
2k2
BT

3|e|EF χ χ = −
[
∂ ln ρ(E)

∂ lnE

]
EF

(19)

wherekB is the Boltzmann constant andχ is the dimensionless thermoelectric parameter. This
parameter can be written [14]

χ = 3− 2α − β/2. (20)

The expressions ofα andβ are given by Vinckelet al [31]. The term 3 is the free electron
contribution; the term 2α comes from the derivation of the upper limit of the resistivity integral.
The approximation:χ ≈ 3− 2α is what is called the local approximation. The termβ/2
comes from the derivation of the integrand (energy dependence contribution). The different
approximations will be reported in table 2.
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4. Results and discussion

We employed the direct contact four-probe technique to perform the experimental resistivity
and the small1T method [32] to obtain the experimental thermopower. Our values for
the resistivity (figure 4) and the thermopower (figure 5) are respectively 67.98 µ� cm and
−0.23µV ◦C−1 at 950◦C. The temperature dependence law is reported in both figures. These
values are in good agreement with the results reported by Koubaa and Gasser [33] and more
recently by Schnyderset al [34]. In order to reproduce the latter experimental electronic
transport properties of liquid germanium, several prime calculations have been done, within
the pseudopotential models. Koubaa and Gasser [33] and Schnyderset al [34] have used the
Bachelet–Hamann–Schlüter [35] non-local pseudopotential. Their calculated values for the
thermopower are relatively good but the resistivities are far below our experimental results.
On the other hand, Waseda and Suzuki [36] have used the framework of the single sitet-matrix
approach together with the approach of Dreirach [8] for the determination of the Fermi energy
and the one of Slater for the exchange potential. Their calculated results become fortuitously
close to the experimental measurements. The recent experimental and calculated resistivity
and thermopower values are summarized in table 1.
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Figure 4. Experimental electrical resistivity of pure liquid germanium as a function of temperature.

Table 1. Comparison between recent experimental and calculated resistivities and thermopower
values of liquid germanium.

ρexp. (µ� cm) ρcalc. (µ� cm) Qexp. (µV ◦C−1) Qexp. (µV ◦C−1)

Schnyders and Van Zytveld [34] 66.8 41.2 −0.3
Koubaa and Gassar [33] 67.8 55 −0.4 −2.2
Waseda and Suzuki [36] 66.2 −3.2
This work 67.98± 0.30 see table 2 −0.23± 0.40 see table 2

The present calculations were performed with the three kinds of muffin-tin potential
recorded in section 1. The experimental radial distribution function and the corresponding
structure factors used respectively in the superposition procedure and in the calculation of
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Figure 5. Experimental thermopower of pure liquid germanium as a function of temperature.
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Figure 6. Energy dependence of the electrical resistivity of liquid germanium. Calculations were
made using the neutral pseudoatom approach with Robinson’s correction and are compared to the
HSS approach and to our experimental data.

electronic transport properties have been measured by Bellissent-Funel and Bellissent [2, 26].
The resistivity and the thermopower are calculated as a function of energy from the muffin-tin
zero potential to 1 Rydberg with the Herman–Skillman–Slater potential. The Ziman expression
of the resistivityρ(E) includes two parameters:k which appears in the prefactor and in the
upper limit of the integral andE which appears in the expression of thet-matrix through
the phase shifts which are a function of energy. In the Esposito approach (EB = 0) both
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Figure 7. Energy dependence of the thermopower of liquid germanium. Calculations were made
using the neutral pseudoatom approach with Robinson’s correction and are compared to the HSS
approach and to our experimental data.

parameters are bound by a relationE = h̄2k2/2m and are dependent. In our calculationk
andE are correlated and varied simultaneously. We can consider that we increase the number
of electronsNC , that the Fermi sphere is expanded and that simultaneously the Fermi energy
increases above the muffin-tin zero energy. This leads to a first resistivity and thermopower
versus energy curve indicated ‘HSS (Esposito)’ in figures 6 and 7.

In the second approach we have a value ofEB different from zero. The resistivity
is a function ofk, E andEB and we have one relation between these parameters:E =
EB+h2k2/2m∗. So we have to deal with two independent parameters. The bottom of the energy
band has been calculated following the Ziman formula [15]. We obtained−0.334 Ryd for
liquid germanium at 950◦C (Dreirach obtained−0.31 Ryd). The resistivity and thermopower
curves are different for eachEB . The second curves obtained with that value ofEB are indicated
‘HSS (Dreirach)’ in figures 6 and 7.

We improved the electron correlation contribution using the expression of Robinsonet al
[18] for the average screened exchange potential expressed in formula (3). We obtain a
third resistivity and thermopower versus energy curve in figure 6 and 7 denoted ‘Robinson
(Esposito)’ to indicate that we used the Robinson contribution with Esposito’s approach
(EB = 0 and the density of state obtained with the Lloyd formula). With this correction we
obtained a lower resistivity versus energy curve which indicates a very important modification
of the electronic transport properties if the exchange contribution is properly taken into account.
However this approach is not even fully consistent. It remains that the Ziman formula gives
anEB value which is non-negligible. Thus we achieve the consistency of the calculation by
our approach presented in section 2.3. We obtained the curve indicated ‘Robinson (EB = 0)’
corresponding to the HSS potential with Esposito’s approach for the Lloyd density of states,
with Robinson’s correction and with the self-consistent determination of the muffin-tin zero
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Figure 8. Energy dependence of the electrical resistivity of
liquid germanium. Calculations were made with the Ratti
ionic approach and are compared to the HSS approach and
to our experimental data.

potential. The curve is increased from 20 to 40µ� cm compared to the third curve (Robinson
(Esposito)) and is near the second curve (HSS (Dreirach)). To compare with the experimental
resistivity and thermopower it is necessary to determine the Fermi energy by filling the density
of states curve with the four valence electrons of germanium. The Fermi energies are very
different for the different curves. They are indicated by dots on the resistivity and thermopower
versus energy curves and their numerical values are reported in table 2. In this table we
give two values for the thermopower. The first value corresponds to the local approximation
(χ = 3−2α). The second value is the full energy dependent expression (χ = 3−2α−β/2).

4.1. HSS and Robinson’s correction

We observe that the HSS potential combined with the Fermi energy determination given by
Dreirach and Esposito leads to resistivity values (96 and 92µ� cm respectively) larger than the
experimental value (68µ� cm). The resistivity obtained with Robinson’s potential in which
the effects of the electron correlation are taken into account are below the values found with
the HSS potential. It stresses the particular importance of the Fermi energy determination. It
is clear that the best result is obtained with the fourth curve (Robinson (EB = 0)) where we
obtain a resistivity of 62µ� cm compared to the experimental one of 68µ� cm. Considering
the thermopower, all the calculations give results between−3.5 and−4.5 µV ◦C−1 which
indicate that the thermopower is not sensitive to the method of calculation. All calculated
resistivities and thermopower for various muffin-tin potentials are reported in table 2.

4.2. Ionic potential

The resistivity and thermopower calculated with Ratti’s potential, supplemented by the
Ichimaru–Utsumi [38] dielectric screening function, are presented in figures 8 and 9 together
with the curves previously calculated with the HSS potential. The closest value to the
experimental resistivity is again that obtained with our self-consistent calculation and Fermi



Resistivity and thermopower of molten germanium 683

Table 2. Fermi energy (EF ), effective number of conduction electrons (NC ), resistivity (ρ(EF ))
and thermopower (Q(EF )) of liquid germanium.

Q(EF ) Q(EF )

(µV ◦C−1) (µV ◦C−1)
EF ρ(EF ) local full
(Ryd) NC (µ� cm) approximation calculation

HSS (Dreirach)
EB = −0.334 (Ryd),
m∗ = me 0.535 4 96.12 −0.91 −4.45
HSS (Esposito) 0.787 3.452 91.92 +5.13 −3.76
Robinson (Esposito) 0.913 4.381 40.51 +5.27 −3.87
Robinson (EB = 0) 0.861 3.942 61.96 +6.11 −4.11
Ratti (Esposito) 0.884 4.038 45.26 +4.69 −2.94
Ratti (EB = 0) 0.846 3.846 52.89 +5.41 −2.70
LDA (Esposito) 0.886 4.075 53.45 +5.05 −1.79
LDA (EB = 0) 0.851 3.875 62.90 +5.19 −1.75
GGA (Esposito) 0.891 4.152 46.57 +4.82 −1.63
GGA (EB = 0) 0.868 3.987 55.96 +5.43 −1.78
Exp. (present work
and [37]) 67.98 −0.23 −0.23
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Figure 9. Energy dependence of the thermopower of liquid
germanium. Calculations were made with the Ratti ionic
approach and are compared to the HSS approach and to our
experimental data.

energy determination. The thermopower values calculated with Ratti’s potential shift slightly
towards the experimental value as can be seen on figure 9.

4.3. Density functional theory

Within the free boundary condition the calculated resistivities and thermopowers obtained
in the simple LDA and the generalized gradient approximation are presented in figures 10
and 11. The GGA proposed by Perdew and Wang [20] has also been used. It appears that
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Figure 10. Energy dependence of the electrical resistivity of liquid germanium. Calculations were
made using the neutral pseudoatom approach with LDA and GGA and are compared to the HSS
approach and to our experimental data.

the LDA results are very close to the measured resistivity value, even better than the GGA
result. The density functional theory improves the HSS approach for the obvious reason
that it includes a correlation term. The GGA introduced to take care of the inhomogeneity
[39] of the electron density does not confirm an expected better result. The calculated
thermopower values are very closer the experimental value than those obtained with the
previous approaches:−1.75 µV ◦C−1 and−1.78 µV ◦C−1 respectively for LDA and GGA
compared to an experimental value of about−0.23µV ◦C−1.

In order to verify the free boundary conditions, Espositoet al [16] introduced the so-called
effective valenceNC in place of the pure valenceZ, as such anNC can be interpreted as giving
the same free electron density of states as the real one. Within that description each germanium
atom loses its four valence electrons to form the conduction band. It implies that if the density
of states is free electron like,NC should display a value close to four electrons. Considering the
results of table 2,NC is very near the value of four for all the potentials including a correlation
contribution (Robinson, Ratti, LDA). The sole exception concerns the HSS potential where
only the exchange term is taken into account.

We can also deduce from the results of table 2 that the determination of the Fermi level
with Esposito’s procedure and the subsequent resistivity derivation leads to underestimated
values for the resistivity (except the HSS potential). As the resistivity decreases when the
charge carrier concentration increases, the theoretical results should be improved either ifNC
decreases or if theρ(E) curve is shifted to higher values. The application of the free boundary
conditions to the liquid conduction band suggested in the present work achieves these two
goals. The inspection of table 2 and figures 6, 8 and 10 shows that our correction raises
the resistivity. For each potential, the two quantities evolve in the right way and provide a
justification of the use our self-consistent method. We can also observe in table 2 the very
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Figure 11. Energy dependence of the thermopower of liquid germanium. Calculations were made
using the neutral pseudoatom approach with LDA and GGA and are compared to the HSS approach
and to our experimental data.

important contribution of thet-matrix energy dependence that corrects the local approximation
from 3.5 to 10.2 µV K−1. It is evident that the energy dependent contribution plays a very
important role and cannot be neglected.

5. Conclusion

We would like to emphasize that there was an uncertainty in the determination of the Fermi
level since the construction of the muffin-tin potential and the derivation of the one electron
energy spectrum are treated separately. Indeed, theab initioself-consistent methods intensively
developed for ordered solids to obtain the electronic ground state were largely missing for not
well organized materials. The electronic density of states and the muffin-tin potential for
liquids metals were not self-consistently positioned with respect to each other. This puzzling
point received two different answers within the works of Dreirach [8] and Espositoet al [16].
To cope with the difficulty both authors proposed a different prescription for the Fermi energy
determination. In this paper a combination of the two prescriptions has been presented added to
a consistent determination of the Fermi energy when free boundary conditions are considered.

We compared three different points of view (Hartree–Fock and neutral pseudoatom,
Hartree–Fock and ionic plus electronic potentials and finally DFT). We first included the
correlation contribution in two first schemes (which reduced drastically the resistivity) and
compared to the LDA result. All these values are too low. Then we correct the three results
by matching self-consistently the bottom of the band with the muffin-tin zero potential.
The calculated resistivities are considerably improved, the LDA method giving a result
(62.9µ� cm) approximately the same as the Robinson method (62.0µ� cm) to be compared to
the experimental one (67.8µ� cm). For the various approaches based on muffin-tin potentials
including the correlation effect, the free boundary condition improves always the quality of the
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results. The LDA method gives better results for the thermopower (−1.75µV ◦C−1) than the
Robinson method (−4.11µV ◦C−1) compared to our experimental value of−0.23µV ◦C−1.
This study allows us to stress two observations: first the calculated results are very sensitive to
the potential used, second the density functional theory with the standard LDA approximation
gives the best results both for the resistivity and the thermopower. This observation is not
surprising since the LDA is now widely used in solid electronic structure calculation owing to
its success over other approaches.
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